

Discovery of Novel Antimalarial Agents: *In vitro* Biological Evaluation of a Series of Rhodanine Analogues

Firdaus Suffian Farah Yasmin¹, Senthil Kumar Priadarshini¹, Sirtharan Sharanya K¹, Wong Yu Wan¹, Khaw Loke Tim² and Avupati Vasudeva Rao^{3*}

1. Department of Biomedical Science, School of Health Sciences, IMU University, Kuala Lumpur 57000, MALAYSIA

2. Department of Pathology and Pharmacology, School of Medicine, IMU University, Kuala Lumpur 57000, MALAYSIA

3. Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University, Kuala Lumpur 57000, MALAYSIA

*vasudevaraoavupati@gmail.com

Abstract

Discovery of novel antimalarial agents is in urgent demand due to the global emergence of *Plasmodium falciparum* resistant malaria against first-line drugs. In line with the demand, we studied *in vitro* antimalarial properties of a series of rhodanine analogues (C-C13) for their bioactive potential against *P. falciparum*. Based on the analysis of screening results and structure-activity relationship (SAR), C11 was found to be a promising bioactive hit molecule (IC_{50} : 4.755 μ M).

Keywords: Antimalarial agents, *Plasmodium falciparum*, Rhodanine.

Introduction

The World Malaria Report 2023 states that there were estimated 249 million cases and 608,000 deaths reported worldwide in 2022 due to Malaria¹⁴. It is a parasitic disease transmitted to humans through the bite of a female *Anopheles* mosquito which is a causative agent of the infection¹¹. The five species of parasites that cause human malaria are *Plasmodium falciparum*, *P. vivax*, *P. ovale*, *P. malariae* and *P. knowlesi*. Notably, *P. falciparum* is the primary species of severe malaria and is associated with a greater case fatality rate due to its resistance to antimalarial drugs².

The first-line treatment for malaria involves 3 days of Artemisinin-based combination therapy (ACT) where the artemisinin derivative significantly reduces the number of parasites during the first three days while the partner drug eradicates any remaining parasites, curing the infection. However, artemisinin-resistant *P. falciparum* has emerged and significantly contributed to treatment failure of existing ACT, compounded by partner drug resistance in ACTs⁶. Hence, the need for new antimalarial treatments and drug combinations for clinical use is critical. The end goal is to develop an ideal antimalarial therapy that inhibits all stages of parasite development, acts on novel targets, shows effectiveness at a single dose, shows no cross-resistance with other antimalarial drugs and is clinically safe⁷.

Rhodanine (2-thioxothiazolidin-4-one) is a five-membered heterocyclic compound with a thiazolidine core¹⁵ that belongs to a known group of biologically active

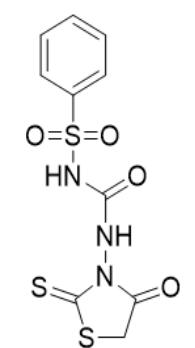
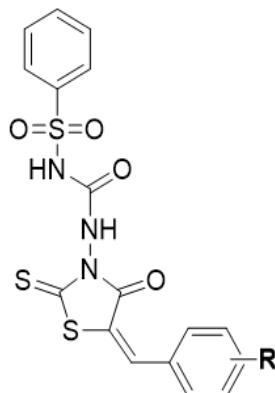
compounds¹⁰. Over the years, rhodanine derivatives have garnered significant attention in medicinal chemistry as a valuable scaffold because of their vast spectrum of biological activity¹⁴, chemical diversity and various interactions with different targets⁴.

According to numerous *in vitro* studies reported, lead compounds with antimalarial properties were developed by substituting distinct functional groups on the rhodanine ring structure¹². Furthermore, existing research has conclusively shown that compounds containing rhodanine core exhibit enhanced antimalarial potency compared to the antimalarial drugs that have become resistant⁹. Based on the structure-activity relationship (SAR) analysis of identified lead compounds, the antimalarial activity has significantly increased when the rhodanine scaffold is substituted with a benzylidene group, heterocyclic ring, electronegative group (fluorine, chlorine, bromine etc.), electrostatic group, hydrophobic group, hydrogen-bond donor, or combination with pharmacologically active compounds¹⁶.

Hence, the substitution of different functional groups at the C-5 and N-3 positions of the rhodanine ring is essential for the development of novel rhodanine derivatives¹³. Furthermore, several studies have investigated the roles of compounds containing a tosylurea chemotype where the compounds were reported to exhibit high inhibitory activity against *P. falciparum* in the sub-nanomolar range¹. Therefore, our study proposed to explore a rational approach to determine the *in vitro* antimalarial activity against *P. falciparum* of a series of 5-benzylidene-rhodanines with a tosylurea chemotype substitution at the N-3 position as prospective antimalarial agents.

Additionally, a structure-activity relationship (SAR) analysis was also derived to understand the role of chemical structural features contribution to their compounds' antimalarial properties. Therefore, the test compounds that were earlier synthesised, purified and characterised by physical and spectral methods (Figure 1) were screened through the SYBR green antimalarial activity screening bioassay³. IC_{50} values were determined to calculate the potency with respect to their antimalarial activities.

Material and Methods



Medium preparation: An incomplete malaria medium was prepared by dissolving 1 g glucose, 1.35 g sodium

bicarbonate (Thermo Fisher Scientific, USA), 3g of 4-(2-hydroxyethyl)-1piperazineethanesulfonic acid (HEPES) (VWR Life Sciences, USA) in Hyclone RPMI 1640 (Thermo Fisher Scientific, USA) which was then supplemented with albumax II (0.5%, w/v), 30µg/mL gentamicin (Life Technologies, USA) and 50µg/mL hypoxanthine (Merck, USA).

P. falciparum parasite culture and maintenance: The parasite culture method was similar to those previously described by Khaw et al.⁶ The *P. falciparum* lab strain 3D7 (provided by University Malaya) was grown in washed human O⁺ red blood cells and maintained in culture with the prepared Malaria Complete Medium (MCM). The parasites were incubated in sealed flasks and maintained *in vitro* at 37°C and were subjected to microaerophilic conditions [5% O₂, 5% CO₂ and 90% N₂], supplied in the form of a dedicated gas cylinder (Linde, Germany). Every two days, the medium was changed and the level of parasitaemia was checked. Blood smears were prepared, fixed in methanol and air-dried. The slides were stained with 20% Giemsa for 45 minutes and observed at 100x magnification under oil immersion. Approximately, 1000 red blood cells per smear were counted and the parasitaemia (%) was calculated as:

$$\text{Parasitaemia (\%)} = \frac{\text{Number of Parasitised RBCs (iRBCs)}}{\text{Total number of RBCs}} \times 100$$

Preparation of compound dilutions: 100 mM stock

Code	R
C1	H
C2	3-OCH ₃
C3	2,4-diOCH ₃
C4	4-N(CH ₃) ₂
C5	2-Cl
C6	3-Cl
C7	4-Cl
C8	2-F
C9	3-F
C10	4-F
C11	2-Br
C12	3-Br
C13	4-Br

Figure 1: Chemical structures of rhodanine analogues (C-C13)

solutions of the test compounds (C-C13), which were earlier synthesised and characterised in IMU research laboratories⁴, were prepared by dissolving the compounds in 100% dimethyl sulfoxide (DMSO) (Sigma Aldrich, USA). The prepared stock solutions were further diluted in MCM to the desired starting concentrations, after which two-fold serial dilution was performed to achieve concentrations of 100, 50, 25, 12.5 and 6.25 µM. 50 µL of test compounds were pre-dosed in the 96-well flat-bottom black cell culture plate (SPL Life Sciences, Korea) and kept at 4°C to be used within 1 day after preparation.

Malaria SYBR Green Assay: Asynchronous parasites were used, with starting parasitaemia no less than 2.5%. 50 µL of parasitised red blood cells (1% parasitaemia and 5% haematocrit) was added to each well of the pre-dosed 96-well flat bottom black cell culture plate containing test compounds in triplicate at desirable concentrations. DMSO alone without parasitised red blood cells, non-parasitised red blood cells, parasitised red blood cells and artesunate were used as fluorescence control, reference control, negative control and positive control respectively. The final concentration of DMSO in the assay was at 0.1%. Following this, the plate was placed in an airtight Tupperware, gassed with 5% O₂, 5% CO₂ and 90% N₂ and incubated at 37°C for 72 hours. The assay was terminated by freezing the plate at -80°C overnight.

After thawing for 2 hours, each well was added with 50 μ L SYBR green I lysis buffer containing 20 mM tris(hydroxymethyl)aminomethane (TRIS) (1st Base, Singapore), 5 mM ethylenediaminetetraacetic acid (EDTA) (R and M chemicals, UK), 0.008 % (W/V) saponin (Sigma Aldrich, Germany), 0.08 % (V/V) tritonTM X-100 (Sigma Aldrich) and 1x SYBR green nucleic acid dye (Invitrogen by Thermo Fisher Scientific). The plates were placed on the Stovall Belly Dancer shaker for 30 minutes at room temperature for thorough mixing. This was followed by measurement of the fluorescence intensities at excitation/emission wavelength = 485/528 nm using the Tecan Infinite 200 Pro M Plex microplate reader. The parasite growth percentages were determined using the formula:

$$\text{Parasite Growth (\%)} = \frac{\text{FL}_{\text{sample}} - \text{FL}_{\text{uRBC}}}{\text{FL}_{\text{iRBC}}} \times 100\%$$

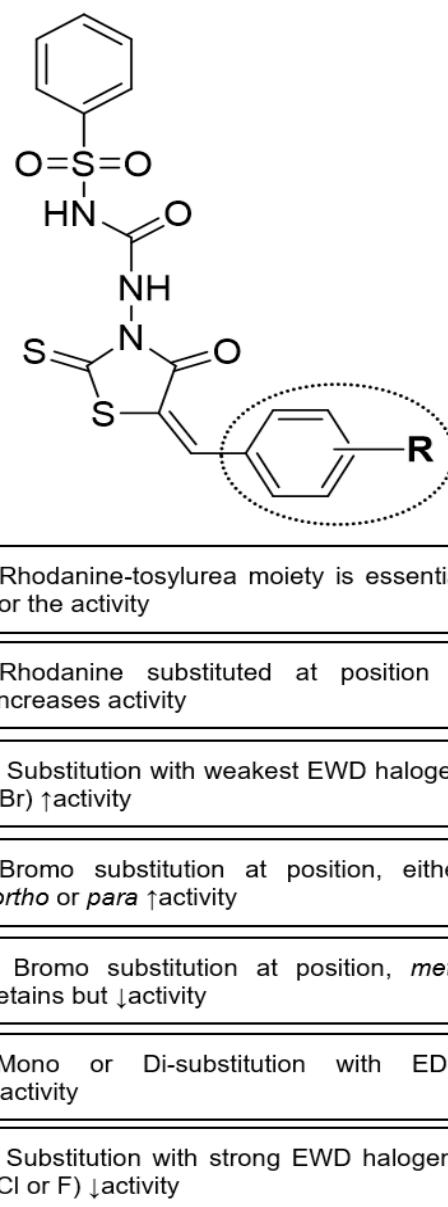
where $\text{FL}_{\text{sample}}$ is the fluorescence intensity of treated parasites, FL_{uRBC} is the fluorescence intensity of sample background and FL_{iRBC} is the fluorescence intensity of untreated parasitised RBCs.

Statistical Analysis: The concentration that inhibited parasite growth by 50% (IC_{50}) for each test compound was estimated from a dose-response curve by non-linear regression analysis using GraphPad Prism 10 (GraphPad, CA) software.

Results and Discussion

The antimalarial activity of the compounds showcases a range of potencies influenced by their structural features as shown in figure 2. In total, there were 14 compounds (one intermediate and thirteen 5-benzylidene analogues) screened against *in vitro* *P. falciparum* malaria. All compounds displayed minimal to greater levels of activity at 100 μ M concentration. The greater potency recorded only in case of compounds (C11-C13) was further studied for their inhibitory potential. The bromine-containing 5-benzylidene rhodanine derivatives (C11-C13) were recognised for their *in vitro* antimalarial efficacy against (3D7) strains of *P. falciparum*.

falciparum, using the malaria SYBER green I nucleic acid staining dye-based fluorescence (MSF) assay.


The bioassay results were shown in figure 2, with the IC_{50} values determined for each compound (C11-C13). Compounds with an IC_{50} greater than 100 μ M were considered inactive, while those with an IC_{50} between 1 and 10 μ M were classified as bioactive hit molecules. In this case, C11 (2-bromo-5-benzylidene rhodanine) was identified as the most potent compound, with the lowest IC_{50} of 4.755 μ M and a high goodness of fit (R^2) value of 0.8374, indicating a good fit to the dose-response model. C12 (3-bromo-5-benzylidene rhodanine) and C13 (4-bromo-5-benzylidene rhodanine) showed low IC_{50} values of 7.130 and 6.876 μ M respectively with good R^2 values indicating active compounds for antimalarial activity. Since no dose-dependent response was observed in the case of other compounds (C-C10) below 100 μ M, the threshold of the concentration was deemed to be inactive (Figure 2).

The SAR was studied based on the functional group modifications introduced on the 5-benzylidene ring of the rhodanine. There are two sets of groups considering EDG (methoxyl and methyl) and EWG (halogens Cl, F and Br) at different positions (ortho, meta and para). This substitution pattern revealed the importance of type of functional group substitution and also its impact on observed antimalarial activity a range of potencies against *P. falciparum* by all compounds initially at 100 μ M concentration. The substitution of bromine enhances the antimalarial potency as seen in the case of compounds C11-C13. However, the position on the ring system also plays a major role for bromine to be the most active. The ortho-isomer was found to be the most potent analogue in comparison to the meta and para isomers respectively.

Bromine is one of the halogens that has very weak EWG potential; this is a discriminative property of bromo substitution with respect to the observed antimalarial properties⁹. On the other hand, in terms of electronegativity, it is less than chlorine and fluorine, so it has more stability when compared to other halogen atoms.

Code	$\text{IC}_{50}(\mu\text{M})$	Code	$\text{IC}_{50}(\mu\text{M})$
C	>100	C7	>100
C1	>100	C8	>100
C2	>100	C9	>100
C3	>100	C10	>100
C4	>100	C11	4.755
C5	>100	C12	7.130
C6	>100	C13	6.876

Figure 2: *In vitro* antimalarial activity of compounds (C-C13) against *P. falciparum*

Figure 3: Structure-activity relationship (SAR) analysis of rhodanine analogues (C-C13) with respect to their *in vitro* antimalarial activity against *P. falciparum*.

Our study result aligned with the outcomes obtained in some previously reported studies that state that the EWG substituent on the phenyl ring of rhodanine derivatives plays an important role in the enhancement of antimalarial activity⁸. A close look into the SAR of rhodanines (Figure 3) indicates that the antimalarial activity is more stable for the bromine group at positions *ortho* and *para* compared to the *meta* position. This observation is consistent with the SAR outcomes of a study highlighting that the substitution of halogens at the *para* position of the phenyl ring in rhodanine derivatives appeared to enhance antimalarial activity⁹.

Conclusion

In summary, bromine-containing 5-benzylidene rhodanine derivatives (C11-C13) were identified as the hit molecules that demonstrated a significant range of antimalarial properties based on the *in vitro* antimalarial activity against

P. falciparum, demonstrating potent IC₅₀ values ranging from 3.740 to 6.145 µM. Furthermore, the modification of the phenyl ring to other aromatic six membered rings with bromine substitution could be remarkable to optimise the hit molecule to be a lead molecule with a more desirable drug-like property. In continuation, *in vivo* studies in animals are needed to elucidate the molecular mechanism of the chemotype discovered in this study.

Acknowledgement

All authors are thankful to the IMU University Vice Chancellor, Dean, School of Pharmacy and Dean, School of Health Sciences for providing the facilities to complete our research project for the fulfilment of the award of programmes at IMU University. This research was funded by IMU Joint-Committee on Research & Ethics, Project ID No. BSc BioMed Sci (Hons): BMSc I-2024 (08).

References

1. Alaithan H., Kumar N., Islam M.Z., Liappis A.P. and Nava V.E., Novel therapeutics for malaria, *Pharmaceutics*, **15**(7), 1800 (2023)
2. Bin Ahmad Kamar A.K.D., Yin L.J., Liang C.T., Fung G.T. and Avupati V.R., Rhodanine scaffold: A review of antidiabetic potential and structure–activity relationships (SAR), *Medicine in Drug Discovery*, **15**, 100131 (2002)
3. Chauhan K., Sharma M., Saxena J., Singh S.V., Trivedi P., Srivastava K., Puri S.K., Saxena J.K., Chaturvedi V. and Chauhan P.M.S., Synthesis and biological evaluation of a new class of 4-aminoquinoline-rhodanine hybrid as potent anti-infective agents, *Eur J Med Chem*, **62**, 693 (2013)
4. Fikadu M. and Ashenafi E., Malaria: an overview, *Infection and Drug Resistance*, **16**, 3339 (2023)
5. Fung G.T., Liang C.T., Yin L.J., bin Ahmad Kamar A.K.D. and Avupati V.R., A Comprehensive Review on the Antimicrobial Activities and Structure-Activity Relationships (SARs) of Rhodanine Analogues, *Anti-infective Agents*, **23**, 1 (2024)
6. Khaw L.T., Rahman N.A., Awang K. and Ibrahim M.N., A preliminary screening of potentially antimalarial plants against *Plasmodium falciparum* *in vitro*, *Trop Biomed*, **32**, 676 (2015)
7. Kumar G., Parasuraman P., Sharma S.K., Banerjee T., Karmodiya K., Surolia N. and Surolia A., Discovery of a Rhodanine Class of Compounds as Inhibitors of *Plasmodium falciparum* Enoyl-Acyl Carrier Protein Reductase, *Journal of Medicinal Chemistry*, **50**, 2665 (2007)
8. León C., Rodrigues J., Gamboa de Domínguez N., Charris J., Gut J., Rosenthal P.J. and Domínguez J.N., Synthesis and evaluation of sulfonylurea derivatives as novel antimalarials, *Eur J Med Chem*, **42**, 735 (2007)
9. Maiga F.O., Wele M., Toure S.M., Keita M., Tangara C.O., Refeld R.R., Thiero O. and Kayentao K., Artemisinin-based combination therapy for uncomplicated *Plasmodium falciparum* malaria in Mali: a systematic review and meta-analysis, *Malaria Journal*, **20**, 50 (2021)
10. Pudhom K., Kasai K., Terauchi H., Inoue H., Kaiser M., Brun R., Ihara M. and Takasu K., Synthesis of three classes of rhodacyanine dyes and evaluation of their *in vitro* and *in vivo* antimalarial activity, *Bioorg Med Chem*, **14**, 8550 (2006)
11. Suresh A.N., Luang A.S.A., Ling M.C.Y., Selvam T.N. and Avupati V.R., Synthesis and *in vitro* Biological Evaluation of a Series of 5-Benzylidene Derivatives of Rhodanine-Sulfonylurea Hybrid as a Novel Class of α -Glucosidase Inhibitors, *Asian Journal of Chemistry*, **36**, 2467 (2024)
12. Mehul Z. and Neha K., Synthesis, Characterisation and Antimalarial Activity of Some New 3-Benzyl-2-Thioxothiazolidin-4-One Derivatives, *International Journal of Pharmacy & Pharmaceutical Research*, **8**(3), 266 (2017)
13. Takasu K., Pudhom K., Kaiser M., Brun R. and Ihara M., Synthesis and antimalarial efficacy of aza-fused rhodacyanines *in vitro* and in the *P. berghei* mouse model, *J Med Chem*, **49**, 4795 (2006)
14. Tavares J., Cordeiro-da-Silva A. and Calderón F., Ending Malaria: Where Are We?, *ACS Infectious Diseases*, **10**(5), 1429 (2024)
15. Tripathi H., Bhalerao P., Singh S., Arya H., Alotaibi B.S., Rashid S., Hasan M.R. and Bhatt T.K., Malaria therapeutics: are we close enough?, *Parasites & Vectors*, **16**, 19 (2023)
16. Yin L.J., Bin Ahmad Kamar A.K.D., Fung G.T., Liang C.T. and Avupati V.R., Review of Anticancer Potentials and Structure-Activity Relationships (SAR) of Rhodanine Derivatives, *Biomedicine and Pharmacotherapy*, **157**, 113982 (2023).

(Received 03rd October 2024, accepted 06th November 2024)